## Maternal Anaemia Management

A Quality Improvement Journey.

Dr Daryl Thorp-Jones Obstetric Anaesthetic Lead University Hospitals Plymouth







Obstetric Anaesthetic Consultant Lead at UHP dthorp-jones@nhs.net

### Consultant focus

Cell Salvage and Blood Conservation (UHP Lead) MOH inc. ROTEM guided hemorrhage management Perioperative Medicine and Prehabilitation (inc CPET)

I have no declarations of interest





## **Objectives**

### Setting the scene

- Impact e to Mother and Baby
- Relevant Maternal and Iron Physiology
- International and National Perspective/Morbidity
- UHP Drivers and Timeline

### **UHP** Strategy

- What are Normal Triggers in 2022
- The Challenges of Iron Management
- Prevention vs Cure. Dividing supplementation from treatment
- UHP Algorithms/ Working with NICE guidance
- Essential requirements to succeed

## Q. What should we accept as "Normal"?

- ▶ IDA 20-30% of pregnancies in UK. (LMICs prevalence 30% to 50%)
- In 2021.. 82 LMICS (3 million women in study) studied and limited decrease in anaemia (35% vs 32%) over 18 year period (2000-18)
- Less data on UK iron deficiency . Rates of iron deficiency of 26%, 33.5% and 53% have been documented (1<sup>st</sup> to 3<sup>rd</sup> Trimester respectively) .
- ▶ 80% of women at term are iron deplete in UK
- > 20% of women at BOOKING are iron deplete in UK
- Ferritin levels are significantly lower in pregnant women over 25, and gravida 3 and above.
- Women 10 x more likely to have IDA, and 2 x more likely than men to need a transfusion



### Maternal implications



### Economic implications

- Reduced physical and mental performance, lethargy, excessive fatigue, sleeping difficulties
- Increased risk of APH and PPH (and Mortality esp LMICs)
- Delayed healing of perineal trauma or LSCS wounds
- Breast milk quality & quantity affected
- Increased LOS/ transfusion requirements increased



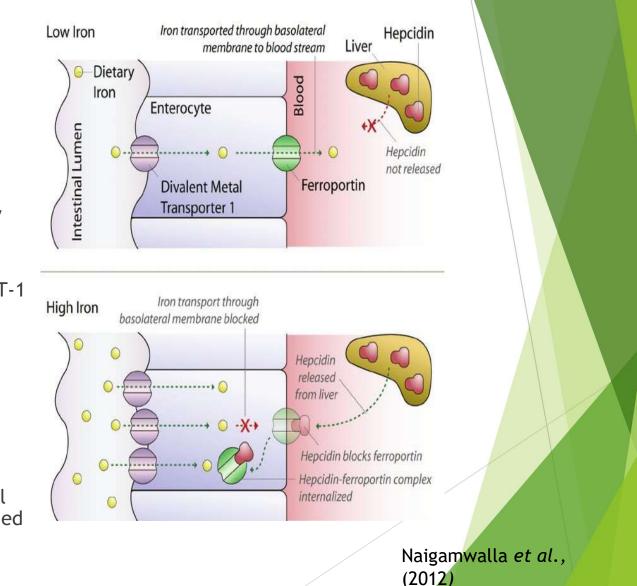
### Fetal implications

- Poor uterine growth, decreased liquor, small gestational age
- Premature delivery, low birth weight
- Postpartum: poor weight gain & failure to thrive

- Physical productivity losses esp in LMICs
- Economic modelling indicate losses of billions per annum worldwide
- Recent analysis suggest gains of \$8 billion lifetime income in LMICs
- Arguably change less impactful in UK of course (salary protection etc)

## Maternal Risk Groups for IDA

| During pregnancy                                               | Postpartum                                                                                    |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| After first trimester<br>Iron deficiency in prior<br>pregnancy | Iron deficiency and iron-deficiency anemia<br>during pregnancy<br>High blood loss at delivery |  |
| Multiparity                                                    | Poor socio-economic status                                                                    |  |
| Short recovery between pregnancies                             | Poor nutritional status                                                                       |  |
| Multipara                                                      |                                                                                               |  |
| Poor socio-economic status                                     |                                                                                               |  |
| Poor nutritional status                                        |                                                                                               |  |


## Iron requirement during pregnancy

- Gestational body iron requirement =1000 mg
  - 350mg to foetus and placenta
  - 450mg maternal red cell mass increase
  - 250mg basal losses from the body
- 250mg lost at delivery
- Total iron needs (1000mg) concentrated in last two trimesters (NOT 1<sup>st</sup>)
- DAILY elemental iron requirements increase from approx. 20mg to 30mg/day when pregnant
- FeSO4 absorption (BNF 60MG elemental iron)

(Hallberg, 1988).

## Oral Iron absorption

- Body cannot excrete iron, therefore absorption is tightly regulated
- Only ferrous (Fe2+) iron absorbed: transported via DMT-1 into enterocyte
- Enters bloodstream via Ferroportin
- High iron load luminally: liver produces HEPCIDIN - binds to Ferroportin & complex is destroyed
- Iron does not cross basolateral membrane; enterocyte sloughed



## Replacement

- Red meat, may contain up to 2 mg/100 mg.
- Dietary iron absorption varies from 1-20 % (animal vs plant)
- For vegetable sources, lacking heme iron, requirements are higher (1000 g soya beans or 5000 g spinach)!
- Food based strategies unlikely to succeed
- 3 mg of supplemental iron in addition to dietary iron should be assimilated daily during the second and third trimesters to prevent iron deficiency in most women
- 60 mg elemental iron from 200mg FeSO4 OD
- BUT Lack of compliance high (1 in 5) esp. TDS iron

## Iron Risk in Pregnancy

- Selection of the iron deficient essential as a strategy (and benefits clearly shown)
- Risk is in unidentified iron replete patients and may include...
  - Overload
  - Free radical formation and oxidative stress (linked to GDM)
  - Changes in intestinal biome
  - Proliferation of pathogens eg malaria
  - Obs specific : iron supplementation in women with high Hb concentrations (i.e., >132 g/L) associated with increased rate of maternal preeclampsia and fetal growth restriction

UHP strategy : Targeted ID treatment with Ferritin essential

## Regulators of iron absorption

| Regulator                                                    | Target      | Effect                                                        | Result                                         |  |
|--------------------------------------------------------------|-------------|---------------------------------------------------------------|------------------------------------------------|--|
| PPI, antacids,<br>antihistamines                             | Gastric pH  | Raise pH, insoluble ferric iron                               | Reduced iron absorption<br>from duodenal lumen |  |
| Polyphenols, dietary<br>fibre, fluoroquinolones              | Ferric iron | Chelation: insoluble<br>antinutritional-mineral<br>complex    | Reduced iron absorption from duodenal lumen    |  |
| Lead, cobalt,<br>manganese, zinc,<br>calcium                 | DMT-1       | Competitive inhibition of iron<br>uptake                      | Reduced iron absorption from duodenal lumen    |  |
| Ascorbic acid, citrate,<br>amino acids                       | Ferric iron | Converts to ferrous iron                                      | Increased iron absorption                      |  |
| Oral iron<br>supplementation, IL-6,<br>saturated transferrin | Hepcidin    | Increased hepcidin production<br>& destruction of ferroportin | Reduced iron efflux into<br>bloodstream        |  |
| Anaemia, hypoxia                                             | Hepcidin    | Reduced hepcidin production                                   | Increased iron efflux into<br>bloodstream      |  |

## Setting the scene (2019 at UHP)

- Iron deficiency anaemia (IDA) most common pregnancy-associated anaemia. National focus on treatment following NCA in 2018
- > 2019 Toolkit/NCA solution. 200mg TDS iron, emphasis on Anaemia and BSH Hb triggers
- UHP approach Reactive rather than proactive (iv ferrinject use at 28 weeks (DAU) and oral 200mg tds iron)

Obstetric Anaemia toolkit

- Normal Hb values as per BSH/local guidelines:
  - Non-pregnant women: Hb 120-155g/L
  - First trimester: <u>Hb >110g/L</u>
  - Second & Third trimesters: <u>Hb >105g/L</u>
  - Postpartum: <u>Hb>100g/L</u>

| Patient Blood Management & Obstetric Anaemia                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | errou  | Tablets   | BNF                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|------------------------------|
| Identifying and correcting anaemia in the obstetric setting is an important part of Patient Blood Management.                                                                                                                                                                                                                                                                                                                                                                                                            | Ľ      |           | DNICO                        |
| Anaemia in pregnancy is defined as first trimester haemoglobin (Hb) less than 110 gH, second/third trimester Hb less than 105 gH, and postpartum Hb less than 100 gH. (1)                                                                                                                                                                                                                                                                                                                                                | accord | -         | BNFC                         |
| In 2016 the Patient Blood Management Team at NHSBT ran a pilot study in partnership with The Royal Free London NHS<br>Foundation Trust and Barts Health NHS Trust to introduce a pathway for the management of Obstetric Anaemia. The<br>objective of this project was to provide healthcare professionals with a clear and simple pathway for the diagnosis,<br>treatment and prevention of iron deficiency in pregnancy and the postpartum period using both oral and intravenous iron<br>preparations as appropriate. | C      | Iron-defi | ciency anaemia (therapeutic) |
| References: 1) Pavord S et al, British Journal of Haematology, 2012, 156, 588-600                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | By mouth  | using tablets                |
| Toolkit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | Child 6-  | -17 years                    |
| This toolkit supports the implementation of the pathway in hospitals across the country. Where appropriate the resources                                                                                                                                                                                                                                                                                                                                                                                                 |        | 200 mg    | 2-3 times a day.             |
| have been published in a format that can be edited to suit local practices, but we do ask for them to be acknowledged to<br>the PBM Obstetric Anaemia Project.                                                                                                                                                                                                                                                                                                                                                           | r      | Adult     |                              |
| Management of Philadelia Assessed (PPP) for the dedictions and added on                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 200 mg    | 2-3 times a day.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -      |           | la la                        |

Sulfate

## National Comparative Audit



2018 National Comparative Audit of the Management of Maternal Anaemia (Hb<110g/L)

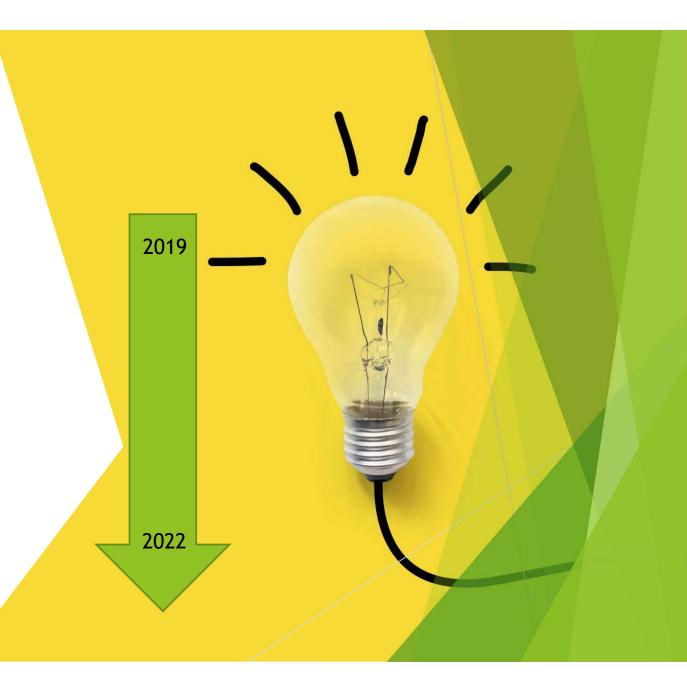
- Interim Key Performance Indicator Report
- Participation: 86 maternity units from around the UK took part and contributed data on 860 births.

### **KPI Headliners:**

- 221 women were found to be anaemic in pregnancy across all trimesters. The point prevalence of anaemia in pregnancy was 221/848 (26%).
- Trend: more commonly diagnosed at 28 weeks later rather than at booking (with continuing iron depletion and/or suggest first trimester Hb is commonly nearer "non pregnant" i.e. higher than 110 g/dl)
- Nationally only 22% of anaemic patients TREATED!
- Nationally only 1 of 35 eligible women REFERRED for Obs review and iv iron at >34 weeks !

## Audit results: Pre pandemic UHP LSCS

Q. Local population: high level of deprivation. What was our likely IDA incidence?


- LSCS from 1<sup>st</sup> Jan 2019 to 31<sup>st</sup> Oct 2019
- ▶ 890 cases with pre-delivery Hb on system
- ▶ 342 Category 4 LSCS:
  - ▶ 18% (<110 g/L)
- ▶ 548 Category 1-3 LSCS:
  - ▶ 16% (<110g/L)

## **UHP** Aims

- What should be considered anaemic in our local population? What triggers should we consider normal based on evidence
- How could we prevent rather than wait to treat (at cheaper cost)
- How can we decrease workload on community colleagues (more iron needs more prescription and MDT discussion) and DAU staff (decrease iv iron need)
- How could we detect iron deficiency and IDA and increase compliance if treatment indicated?
- UHP Aspiration: <u>To decrease anaemia at term to 0%</u>

# UHP PLAN OF ACTION

- CURRENT GUIDELINES: scrutinise - what can be improved?
- AUDIT: five months of antenatal blood results at booking and 28weeks to assess the scale of the problem and define Hb normal range in local Obstetric population
- LITERATURE REVIEW: prevention and treatment of maternal anaemia
- NEW GUIDELINES: generated on audit results & literature review findings
- IMPLEMENTATION & RE-AUDIT



## Normal Range: Local population (UHP)

- Two audits performed using electronic blood results:
- 1. All women (1715) at booking and 28-weeks over a five month period, assessing Hb values & if ferritin requested
- 2. LSCS patients over 10 months and assessing pre-op Hb
- 3. Now published

Implementation of early management of iron deficiency in pregnancy during the SARS-CoV-2 pandemic

Tessa Stewart<sup>1</sup>, Joanna Lambourne<sup>2</sup>, Daryl Thorp-Jones<sup>1</sup>, and Wayne Thomas<sup>1</sup>

<sup>1</sup>University Hospitals Plymouth NHS Trust <sup>2</sup>William Harvey Hospital

October 14, 2020

 $\label{eq:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:tilde:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttline:ttli$ 

Stewart T<sup>1</sup>, Lambourne J<sup>2</sup>, Thorpe-Jones D<sup>1</sup>, Thomas DW<sup>1,1</sup>University Hospitals Plymouth NHS Trust, Plymouth, Devon, PL6 8DH. <sup>2</sup>East Kent Hospitals NHS Foundation Trust, William Harvey Hospital, Kennington Road, Willesborough, Ashford, Kent, TN24 0LZ

## Summary of UHP paper and Local Normal Ranges

- ▶ 1715 cases
- Booking: 148 (8.6%) women had Hb concentrations <120 g/L with 25 (1.5%) <110 g/L</p>
- Hb values: Median Hb132 g/L, minimum 90 g/L, and maximum Hb 160 g/L The 95% lower limit confidence level was <u>116 g/L</u>
- 81 cases: Hb fell from booking to 28 weeks' gestation by a median of 8 g/L (range +39 to -27 g/L) with 33 (41%) dropping by 10 g/L or more

Conventional standards accept Hb 110g/L by 13 weeks gestation as normal, but our lower limit of normal for the first trimester was 116g/L?

## Normal range: WHO Maternal HB Data

| World Health<br>Organization                                                             | Health Topics ~                         | Countries ~                                                                      | Newsroom ~                | Emergencies          | ~  |
|------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|---------------------------|----------------------|----|
| GHO Home                                                                                 | Indicators                              | Countries                                                                        | Data API 🗸                | Map Gallery          | Pi |
|                                                                                          | bin level of pregnant                   | women (aged 15-4                                                                 | 19 years)                 |                      |    |
| FILTERS<br>Last updated: 2022-04                                                         | 4-01                                    |                                                                                  |                           |                      |    |
|                                                                                          | 4-01                                    | Mean hemoglobir                                                                  | n level of pregnant wome  | n (aged 15-49 years) |    |
| Last updated: 2022-04<br>Location                                                        | 4-01<br>Great Britain and Northern Irel |                                                                                  | n level of pregnant wome  | n (aged 15-49 years) |    |
| Last updated: 2022-04<br>Location                                                        |                                         |                                                                                  | n level of pregnant wome  | n (aged 15-49 years) |    |
| Last updated: 2022-04<br>Location                                                        |                                         | land                                                                             | n level of pregnant women | n (aged 15-49 years) |    |
| Last updated: 2022-04<br>Location<br>United Kingdom of G<br>2019                         |                                         | land<br>120 [115 – 125]                                                          | n level of pregnant women | n (aged 15-49 years) |    |
| Last updated: 2022-04<br>Location<br>United Kingdom of G<br>2019<br>2018                 |                                         | land<br>120 [115 – 125]<br>120 [116 – 125]                                       | n level of pregnant wome  | n (aged 15-49 years) |    |
| Last updated: 2022-04<br>Location<br>United Kingdom of G<br>2019<br>2018<br>2017         |                                         | land<br>120 [115 – 125]<br>120 [116 – 125]<br>120 [116 – 125]                    | n level of pregnant wome  | n (aged 15-49 years) |    |
| Last updated: 2022-04<br>Location<br>United Kingdom of G<br>2019<br>2018<br>2017<br>2016 |                                         | land<br>120 [115 – 125]<br>120 [116 – 125]<br>120 [116 – 125]<br>120 [116 – 125] | n level of pregnant women | n (aged 15-49 years) |    |



## N V I S I E W O M E

EXPOSING DATA BIAS IN A WORLD DESIGNED FOR MEN

ROLIN

## Triggers for Surgical Preoptimisation (at UHP)

- Anaemia is defined by the WHO as an Hb concentration <130 g/l for men,<120 g/l for non-pregnant women and<110 g/l for pregnant women
- Historically, sex specific definitions for anaemia were the norm as the higher prevalence of iron-deficiency due to pregnancy and menstruation was often noted as a "physiological"
- 2017 international consensus statement on the Perioperative management of anaemia and iron-deficiency (Anaesthesia) noted that women are twice as likely to receive a transfusion compared with men
- In addition, a 10 g/l decrease in Hb has been shown to be independently associated with increased transfusion requirements, increased mortality and prolonged hospital stay
  - ..... Hence we feel **gender specific definitions are unhelpful**.....

| First trimester            | Haemoglobin<br>(Hb) <120g/L |
|----------------------------|-----------------------------|
| Second and third trimester | Hb <120g/L                  |
| Term/ Postpartum           | Hb <110g/L                  |

## **UHP Triggers**

Logistical challenges faced BY MIDWIVES

- Challenges when implementing guidelines:
  - Manually check bloods after booking
  - Contact women if low Hb
  - Organise FeSO4 prescription from GP or Obstetrician (supplementation vs NICE TDS)
  - Retest Hb after 2-4 weeks, manually check results
  - If Hb not improved or even lower: contact pregnant woman to say another blood test required (ferritin)
  - Organise blood test, manually check result
  - If ferritin low, requesting parenteral iron infusion from Obstetrician
  - Perhaps pregnant person is busy that week with other childcare commitments so can't attend hospital for first IV infusion
  - Delayed by another week or two...

Easy to see how it is difficult to implement timely and adequate treatment & delayed to the point where women remain anaemic at term

## Optimal dosing regimen (decrease hepcidin)

### Dosing >OD:

- Increase hepcidin
- Reduce iron absorption
- Increase side effects

### Daily dosing vs alternate day dosing:

- Hepcidin reduced in alternate day dosing
- No difference in maternal or fetal outcomes
- Fewer side effects in alternate day dosing
- Better patient adherence
- Less likely to have high Hb (>150) in alternate
  - day dosing



Cochrane Database of Systematic Reviews

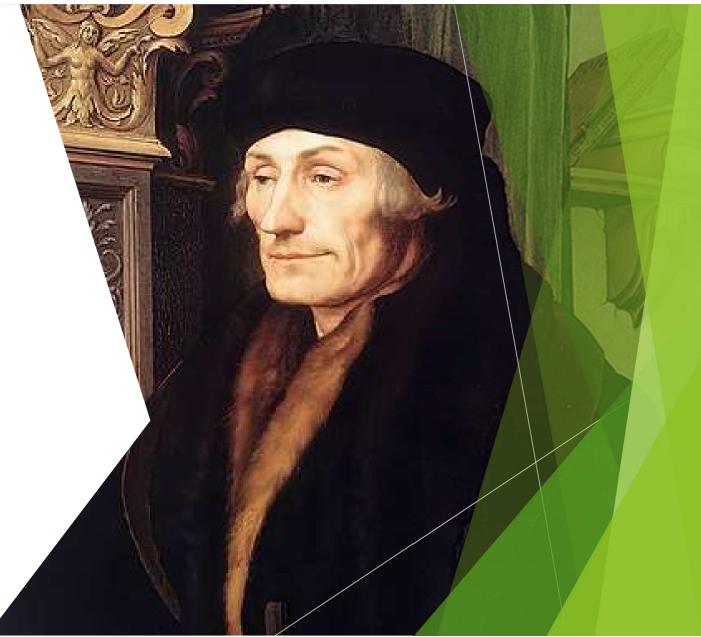
### Intermittent oral iron supplementation during pregnancy (Review)

Peña-Rosas JP, De-Regil LM, Gomez Malave H, Flores-Urrutia MC, Dowswell T

#### THE LANCET Haematology

#### ARTICLES | VOLUME 4, ISSUE 11, PE524-E533, NOVEMBER 01, 2017

Purchase


Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised controlled trials

Nicole U Stoffel, MSc = Colin I Cercamondi, PhD = Prof Gary Brittenham, MD = Christophe Zeder, MSc = Anneke J Geurts-Moespot, BSc = Prof Dorine W Swinkels, PhD = et al. Show all authors = Show footnotes

Published: October 09, 2017 • DOI: https://doi.org/10.1016/S2352-3026(17)30182-5 • 🖪 Check for updates

## "Prevention is better than Cure"

- The phrase 'prevention is better than cure' is often attributed to the Dutch philosopher **Desiderius Erasmus** in around 1500.
- It is now a fundamental principle of modern health care and inherent within health and social care strategies across the UK
- Economic advantage probable especially when interventions are cheap and low risk
- \*28 x 200mg Ferrous Sulphate costs £1.11



## Proposed changes to anaemia pathway

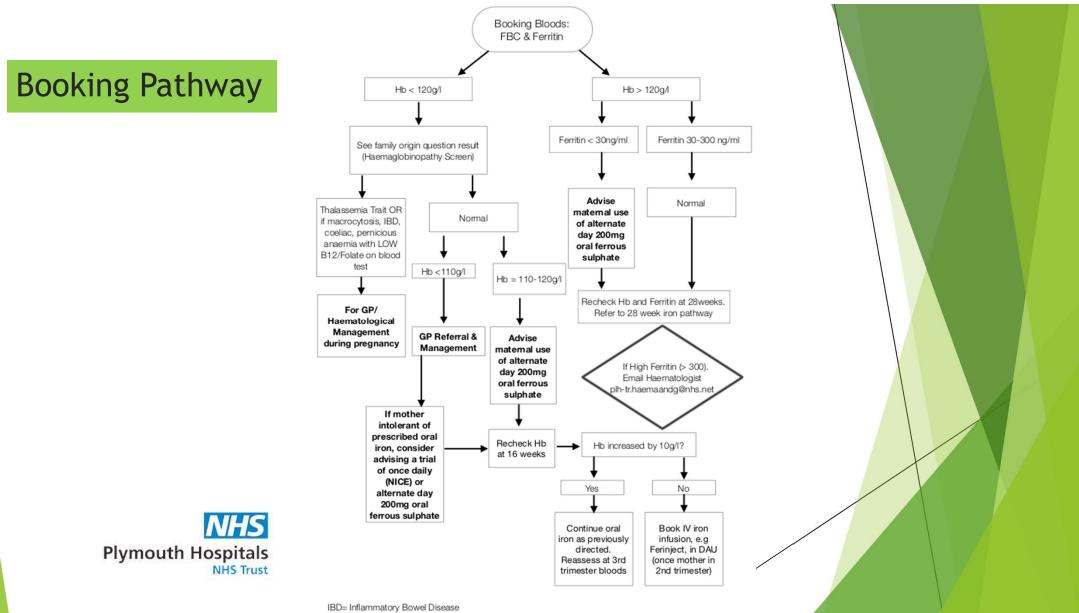
### Different protocols for booking & 28 weeks

•Anaemia: target Hb <120g/L until term/post partum (then <110 g/L) •Treat iron deficiency without anaemia (Prevent rather than cure)

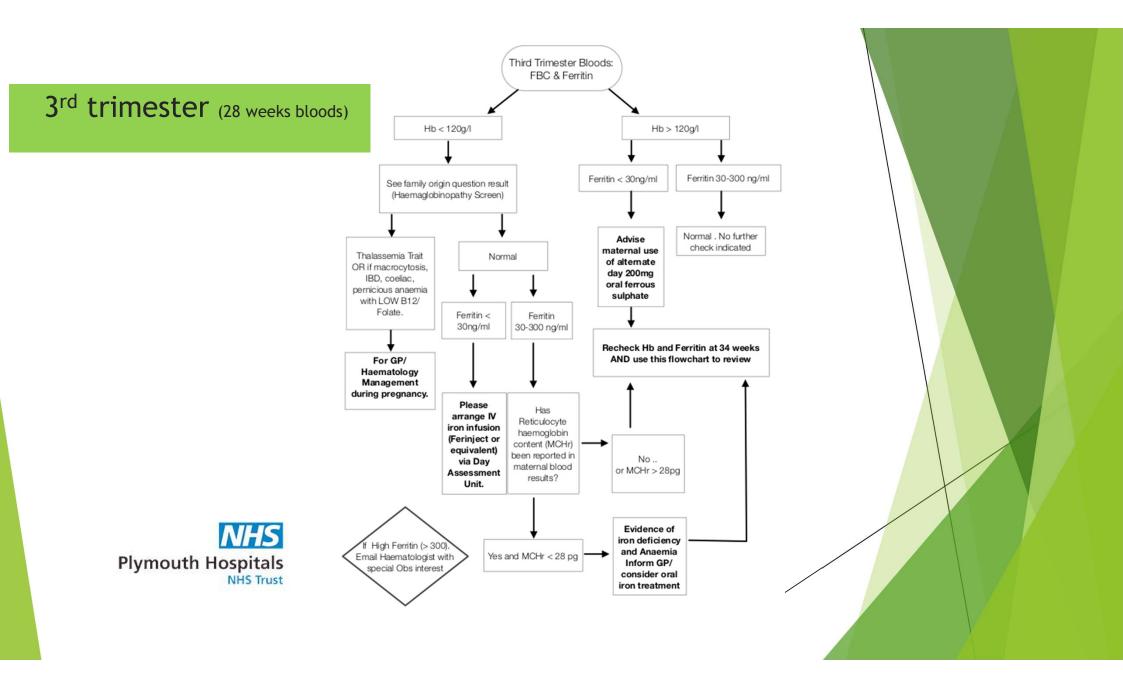
### Check Ferritin

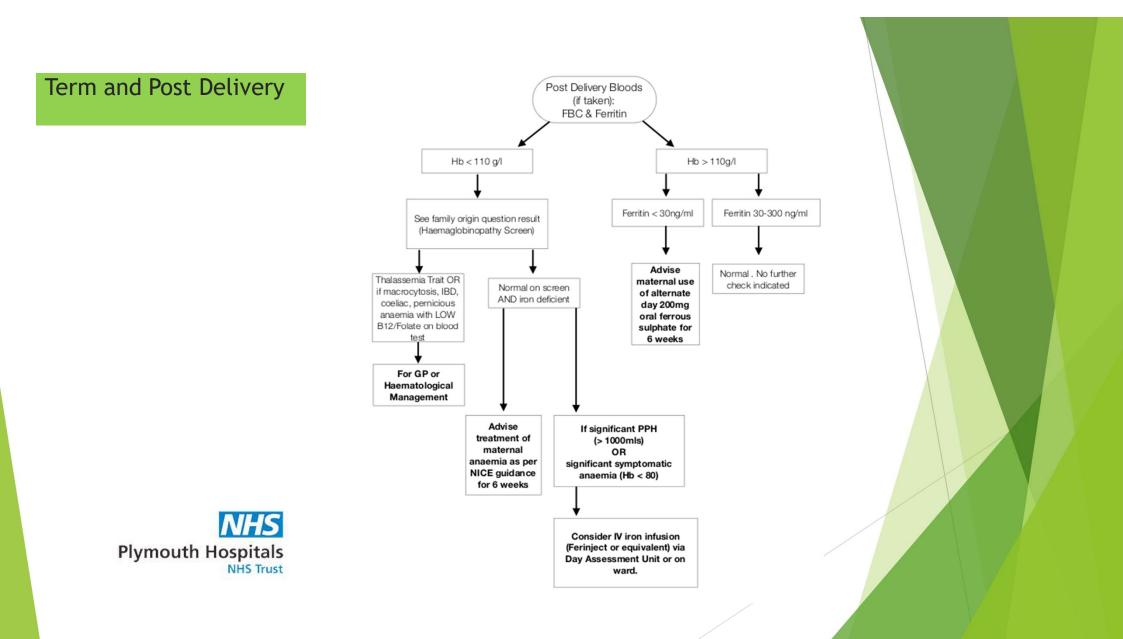
•Targeted treatment in all women - Ferritin at booking & 28 weeks

### More nuanced approach to treatment


•Stratify patients according to MCHr at 28 weeks

### Fargeted supplementation as emphasis : Alternate day dosing of oral iron


- •200mg ferrous sulfate midwife exemption
- Increased compliance
- •Supplementation rather than treatment
- •Treatment as per Nov 21 NICE update


### Recheck Hb after starting PO iror

•Expect 10g/L rise in Hb at 2 weeks •PO iron should continue for 2-3 months or 6 weeks postpartum



DAU = Day Assessment Unit





Dr Wayne Thomas Consultant Haematologist

University Hospitals Plymouth NHS Trust, Plymouth, UK



Dr Stuart Cleland Obs Anaesthetist and RTC/HTC chair

ELSEVIER

BJA Education, 19(12): 390–397 (2 doi: 10.1016/j.bjae.2019.09.003 Advance Access Publication Date: 24 Or

Iron homeostasis and perioperative managemer iron deficiency S.R. Cleland and W. Thomas<sup>\*</sup> Clara Southby Maternity Services Matron

## Conclusion

- Evidence-based approach to pathway design
- Suggest Hb <120g/L until term (then <110g/L) after deriving normal ranges in our local population
- Separate guidance for booking & 28week appointments
- Testing of ferritin with Hb at booking & 28 weeks
- Treatment of iron deficiency with and without anaemia
- Midwife exemption to prescribe & dispense ferrous sulphate
- ► Reduction in IV iron need
- Change in dosing regimen:
  - Alternate day OD dosing to optimise absorption

## References

- Public Health and Plymouth City Council (2019) Index of Multiple Deprivation (IMD) 2019 Plymouth Summary Analysis. Plymouth.
- Snook J, Bhala N, Beales ILP, *et al*, British Society of Gastroenterology guidelines for the management of iron deficiency anaemia in adults, *Gut* 2021;**70**:2030-2051
- Pavord, S. *et al.* (2012) 'UK guidelines on the management of iron deficiency in pregnancy', *British Journal of Haematology*, 156(5), pp. 588-600. doi: 10.1111/j.1365-2141.2011.09012.x.
- Naigamwalla, D. Z., Webb, J. A. & Giger, U. Iron deficiency anaemia. *Can. Vet. J.* **53**, 250-256 (2012).
- Tolkien, Z., Stecher, L., Mander, A. P., Pereira, D. I. A. & Powell, J. J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. *PLoS One* 10, 1-20 (2015)
- Nemeth, E. *et al*. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. *Science* (80-.). **306**, 2090-2093 (2004).
- Moretti, D. *et al.* Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in irondepleted young women. *Blood* 126, 1981-1989 (2015).
- Stoffel et al. Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica 2020;105(5):1232-1239; https://doi.org/10.3324/haematol.2019.220830.

## References

- Lopez, A., Cacoub, P., Macdougall, I. C. & Peyrin-biroulet, L. Iron deficiency anaemia. *Lancet* **6736**, 1-10 (2015).
- Lambourne, J., Stewart, T. and Thomas, W. (2020) 'A review of first trimester anaemia', *British Journal of Haematology*, 189(S1), 4-294. doi: 10.1111/bjh.16638.
- Crichton, R. (2016) Iron Metabolism: From Molecular Mechanisms to Clinical Consequences. 4th Ed. West Sussex, UK: John Wiley & Sons, Inc.
- Galesloot, T. E. *et al.* (2011) 'Serum hepcidin: Reference ranges and biochemical correlates in the general population', *Blood*, 117(25). doi: 10.1182/blood-2011-02-337907.
- Guignard, J. *et al.* (2020) 'Gestational anaemia and severe acute maternal morbidity: a population-based study', *Anaesthesia*, (September 2019). doi: 10.1111/anae.15222.
- Achebe, M. M. & Gafter-Gvili, A. How I treat anemia in pregnancy: Iron, cobalamin, and folate. *Blood* **129**, 940-949 (2017).

## References

- Breymann, C., Honegger, C., Hösli, I. & Surbek, D. Diagnosis and treatment of iron-deficiency anaemia in pregnancy and postpartum. *Arch. Gynecol. Obstet.* **296**, 1229-1234 (2017).
- Peña-Rosas, J. P., De-Regil, L. M., Garcia-Casal, M. N. & Dowswell, T. Intermittent oral iron supplementation during pregnancy (Review). *Cochrane Database Syst. Rev.* 2015, 1-527 (2015).
- Stoffel, N. U. *et al.* Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised controlled trials. *Lancet Haem.* 4, e524-e533 (2017).
- Stewart, T. *et al.* (2021) 'Implementation of early management of iron deficiency in pregnancy during the SARS-CoV-2 pandemic', *European Journal of Obstetrics and Gynecology and Reproductive Biology.* 258, 60-62. doi: 10.1016/j.ejogrb.2020.12.055.