Trauma haemorrhage from trials to clinical practice

Nikki Curry
Consultant Haematologist
RTC May 2024

Global burden of injury

60% of preventable injury related deaths are due to bleeding

Major haemorrhage

UK trauma study:

22 hospitals, n = 12,290

>50% of deaths in first 3 hrs

➤ Mortality: 16% at 24h

WOMAN study:

N = 20,021

Similar pattern to deaths

≥9% within 1 hour

>77% in first 24 hr

Trauma:

Obstetric:

Stanworth et al, 2016. BJS WOMAN Study, the Lancet 2017 389, 2105-2116DOI: (10.1016/S0140-6736(17)30638-4)

Trauma coagulopathy and mortality

Diagnosis of traumatic coagulopathy

VHA methods

TEG and ROTEM

ROTEM

TEG

CCT

FIBRINOGEN

If FIBTEM CA5 < 10 mm

Give additional 4g equivalent of fibrinogen (as cryoprecipitate or concentrate)

PLATELETS

If (EXTEM CA5 – FIBTEM CA5) < 30 mm Give 1 additional pool of platelets

PLASMA

If EXTEM CA5 > 40 mm **AND** EXTEM CT > 80 s Give 4 additional units of plasma

TRANEXAMIC ACID

If EXTEM LI30 < 85 % Give additional 1g tranexamic acid

FIBRINOGEN

If FF TEG MA < 20 mm

Give additional 4g equivalent of fibrinogen (as cryoprecipitate or concentrate)

PLATELETS

If (rTEG MA – FF TEG MA) < 45 mm Give 1 additional pool of platelets

PLASMA

If rTEG MA > 65 mm **AND** rTEG ACT > 120 s Give 4 additional units of plasma

TRANEXAMIC ACID

If rTEG LY30 > 10 % Give additional 1g tranexamic acid

FIBRINOGEN

If Fibrinogen < 2 g/L
Give additional 4g equivalent of fibrinogen

(as cryoprecipitate or concentrate)

PLATELETS

If platelets $< 100 \times 10^9 / L$ Give 1 additional pool of platelets

PLASMA

If INR > 1.2 **AND** Fibrinogen ≥ 2 g/L Give 4 additional units of plasma

ITACTIC FLOW DIAGRAM

PRIMARY OUTCOME: At 24 hours, alive & free of massive transfusion

OR: 1.15 (0.76 – 1.73)

ITACTIC SURVIVAL

28-day Mortality

CCT: 28% VHA: 25%

OR: 0.84 (0.54 – 1.31)

TBI SURVIVAL

28-day Mortality

CCT: 74% VHA: 44%

OR: 0.28 (0.10 – 0.74); Adjusted OR: 0.16 (0.03 – 0.90)

How do we interpret these results?

on behalf of the CRYOSTAT-2 team

CRYOSTAT-2 TRIAL ETHOS:

CRYOSTAT-2 TRIAL ETHOS:

CRYOSTAT-2 TRIAL ETHOS:

A randomised controlled trial in adult patients with major trauma haemorrhage to evaluate the effects of early, empiric, administration of 3 pools of cryoprecipitate on mortality

Randomised, parallel-group Open label

UK & USA 26 Major Trauma Centres

- Adults with traumatic injury
- Suspected on-going active haemorrhage

AND has activated the local major haemorrhage protocol

AND has started or received at least one unit of any blood component

Intervention:

Control:

Primary Outcome: 28-day all-cause mortality

Secondary Outcomes:

- All-cause mortality at 6 & 24 hours
- Death from bleeding at 6 & 24 hours
- Transfusion requirements @ 24 hours
- Mortality at 6 & 12 months
- EQ-5D-5L & GOSE at discharge and 6 months
- Hospital resource use up to discharge or day 28

Patient characteristics

	Std MHP (n=805)	Early Cryo (n=799)
Male		79%
Age (years)	40 (26-55)	38 (25-55)
Time from injury to ED (mins)	77 (55-100)	75 (55-99)
Penetrating injury	35%	37%
Injury Severity score	29 (18-43)	29 (17-43)
Systolic blood pressure (mm Hg)	103 (83-126)	102 (84-124)
Glasgow Coma Scale score	13 (3-15)	14 (3-15)

Timing of Cryoprecipitate

Median time to Cryo: 120 (79-184) vs 68 (53-85) mins

% Cryo within 90 mins: 9% vs 68%

Primary Outcome: All cause 28-day mortality

	Std MHP	Early Cryo
28-day Mortality	26.1%	25.3%
		OR: 0.96 (0.75-1.23)
Missing primary outcome	4.2%	4.9%

Secondary Outcomes: 6 & 24 hr Mortality

	Std MHP	Early Cryo	
6-hr mortality	8.6%	7.1%	0.82 (0.61 – 1.15)
24-hr mortality	12.2%	11.2%	0.91 (0.63 – 1.31)
6-hr deaths from bleeding	4.4%	4.1%	0.93 (0.54 – 1.58)
24-hr deaths from bleeding	4.9%	5.5%	1.13 (0.62 – 2.05)
Time to death from bleeding (mins)	86 (40-205)	191 (81-445)	

Secondary Outcomes: Transfusion requirements Injury to 24 hours

	Std MHP	Early Cryo
RBC units	5 (3-8)	5 (3-9)
FFP	4 (2-8)	4 (2-8)
Platelets	0 (0-1)	0 (0-1)
Cryoprecipitate	0 (0-2)	3 (3-3)
Crystalloid (mls)	1600 (250-3200)	2000 (700-3500)

Secondary Outcomes: Complications & Safety

	Std MHP	Early Cryo
Thrombotic events		
Venous	7.1%	6.9%
Arterial	3.2%	3.3%
Transfusion related events	0.0%	0.4%

Primary Outcome by Subgroup

Primary Outcome by Subgroup: Age

Primary Outcome by Subgroup: Mechanism

Primary Outcome by Subgroup: Mechanism

CRYSSTAT-2 EARLY CRYOPRECIPITATE IN TRAUMA

Early, empiric, administration of high-dose cryoprecipitate did not improve 28-day mortality in severe trauma haemorrhage

Conclusions

- Empiric therapy of fibrinogen replacement is not supported
- Different response according to MOI
- Future work:
 - Individualising therapy
 - Adjuncts to transfusion?

